Part Number Hot Search : 
DF1508M DS18S20Z BT405 CXA1511L SW101 200CA 2SK21 PE4188
Product Description
Full Text Search
 

To Download LTC1543 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 LTC1543 software-selectable multiprotocol transceiver , ltc and lt are registered trademarks of linear technology corporation. d2 d1 ltc1544 rts dtr dsr dcd cts d3 r2 r1 r4 r3 d2 LTC1543 ll txd scte txc rxc rxd 2 14 24 11 15 12 17 9 3 1 4 19 20 623 22 5 13 8 10 18 7 16 1543 ta01 ltc1344a d3 r2 r1 r3 d1 txd a (103) txd b scte a (113) scte b rxc a (115) rxc b rxd a (104) rxd b rts a (105) rts b dtr a (108) dtr b cts a (106) cts b ll a (141) sg (102) shield (101) db-25 connector txc a (114) txc b dcd a (107) dcd b dsr a (109) dsr b d4 dte or dce multiprotocol serial interface with db-25 connector n data networking n csu and dsu n data routers n software-selectable transceiver supports: rs232, rs449, eia530, eia530-a, v.35, v.36, x.21 n tuv/detecon inc. certified net1 and net2 compliant (test report no. net2/102201/97) n tbr2 compliant (test report no. ctr2/022701/98) n software-selectable cable termination using the ltc1344a n complete dte or dce port with ltc1544, ltc1344a n operates from single 5v supply the ltc ? 1543 is a 3-driver/3-receiver multiprotocol trans- ceiver that operates from a single 5v supply. the LTC1543 and ltc1544 form the core of a complete software-select- able dte or dce interface port that supports the rs232, rs449, eia530, eia530-a, v.35, v.36 or x.21 protocols. cable termination may be implemented using the ltc1344a software-selectable cable termination chip or by using exist- ing discrete designs. the LTC1543 runs from a single 5v supply using an internal charge pump that requires only five space-saving surface mounted capacitors. the part is available in a 28-lead ssop surface mount package. descriptio u features applicatio s u typical applicatio u
2 LTC1543 absolute m axi m u m ratings w ww u package/order i n for m atio n w u u order part number (note 1) supply voltage ....................................................... 6.5v input voltage transmitters ........................... C 0.3v to (v cc + 0.3v) receivers ............................................... C 18v to 18v logic pins .............................. C 0.3v to (v cc + 0.3v) output voltage transmitters ................. (v ee C 0.3v) to (v dd + 0.3v) receivers ................................ C 0.3v to (v cc + 0.3v) logic pins .............................. C 0.3v to (v cc + 0.3v) v ee ........................................................ C 10v to 0.3v v dd ....................................................... C 0.3v to 10v short-circuit duration transmitter output ..................................... indefinite receiver output .......................................... indefinite v ee .................................................................. 30 sec operating temperature range LTC1543c .............................................. 0 c to 70 c LTC1543i ........................................... C 40 c to 85 c storage temperature range ................ C 65 c to 150 c lead temperature (soldering, 10 sec)................. 300 c LTC1543cg LTC1543ig v cc = 5v (notes 2, 3) electrical characteristics consult factory for military grade parts. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 top view 28 27 26 25 24 23 22 21 20 19 18 17 16 15 c1 c1 + v dd v cc d1 d2 d3 r1 r2 r3 m0 m1 m2 dce/dte c2 + c2 v ee gnd d1 a d1 b d2 a d2 b d3/r1 a d3/r1 b r2 a r2 b r3 a r3 b r3 charge pump r1 d2 d1 r2 d3 g package 28-lead plastic ssop t jmax = 150 c, q ja = 65 c/ w symbol parameter conditions min typ max units supplies i cc v cc supply current (dce mode, rs530, rs530-a, x.21 modes, no load 13 ma all digital pins = gnd or v cc ) rs530, rs530-a, x.21 modes, full load l 100 130 ma v.35 mode, no load 20 ma v.35 mode, full load l 126 170 ma v.28 mode, no load 20 ma v.28 mode, full load l 40 75 ma no-cable mode l 120 500 m a p d internal power dissipation (dce mode) rs530, rs530-a, x.21 modes, full load 230 mw v.35 mode, full load 600 mw v.28 mode, full load 140 mw v + positive charge pump output voltage any mode, no load l 8.0 9.4 v v.28 mode, with load l 8.0 8.7 v v.28 mode, with load, i dd = 10ma 6.5 v v C negative charge pump output voltage v.28, v.35 modes, no load C 9.6 v v.28 mode, full load l C 8.0 C 8.5 v v.35 mode, full load l C 5.5 C 6.7 v rs530, rs530-a, x.21 modes, full load l C 4.5 C 5.7 v f osc charge pump oscillator frequency 150 khz t r supply rise time no-cable mode or power-up to turn on 2 ms logic inputs and outputs v ih logic input high voltage l 2v v il logic input low voltage l 0.8 v
3 LTC1543 electrical characteristics v cc = 5v (notes 2, 3) symbol parameter conditions min typ max units i in logic input current d1, d2, d3 l 10 m a m0, m1, m2, dce = gnd (LTC1543c) l C 100 C 50 C 30 m a m0, m1, m2, dce = gnd (LTC1543i) l C 120 C 50 C 30 m a m0, m1, m2, dce = v cc l 10 m a v oh output high voltage i o = C 4ma l 3 4.5 v v ol output low voltage i o = 4ma l 0.3 0.8 v i osr output short-circuit current 0v v o v cc l C50 50 ma i ozr three-state output current m0 = m1 = m2 = v cc , 0v v o v cc 1 m a v.11 driver v odo open circuit differential output voltage r l = 1.95k (figure 1) l 5v v odl loaded differential output voltage r l = 50 w (figure 1) 0.5v odo 0.67v odo v r l = 50 w (figure 1) l 2v d v od change in magnitude of differential r l = 50 w (figure 1) l 0.2 v output voltage v oc common mode output voltage r l = 50 w (figure 1) l 3v d v oc change in magnitude of common mode r l = 50 w (figure 1) l 0.2 v output voltage i ss short-circuit current v out = gnd 150 ma i oz output leakage current C 0.25v v o 0.25v, power off or l 1 100 m a no-cable mode or driver disabled t r , t f rise or fall time (figures 2, 6) (LTC1543c) l 21525 ns (figures 2, 6) (LTC1543i) l 21535 ns t plh input to output (figures 2, 6) (LTC1543c) l 20 40 65 ns (figures 2, 6) (LTC1543i) l 20 40 75 ns t phl input to output (figures 2, 6) (LTC1543c) l 20 40 65 ns (figures 2, 6) (LTC1543i) l 20 40 75 ns d t input to output difference, ? t plh C t phl ? (figures 2, 6) (LTC1543c) l 0312 ns (figures 2, 6) (LTC1543i) l 0317 ns t skew output to output skew (figures 2, 6) 3 ns v.11 receiver v th input threshold voltage C 7v v cm 7v l C 0.2 0.2 v d v th input hysteresis C 7v v cm 7v l 15 40 mv i in input current (a, b) C 10v v a,b 10v l 0.66 ma r in input impedance C 10v v a,b 10v l 15 30 k w t r , t f rise or fall time (figures 2, 7) 15 ns t plh input to output (figures 2, 7) (LTC1543c) l 50 80 ns (figures 2, 7) (LTC1543i) l 50 90 ns t phl input to output (figures 2, 7) (LTC1543c) l 50 80 ns (figures 2, 7) (LTC1543i) l 50 90 ns d t input to output difference, ? t plh C t phl ? (figures 2, 7) (LTC1543c) l 0416 ns (figures 2, 7) (LTC1543i) l 0421 ns v.35 driver v od differential output voltage open circuit l 10.00 v with load, C 4v v cm 4v (figure 3) l 0.44 0.55 0.66 v i oh transmitter output high current v a, b = 0v l C 13 C 11 C 9.0 ma i ol transmitter output low current v a, b = 0v l 9.0 11 13 ma i oz transmitter output leakage current C 0.25v v a, b 0.25v l 1 100 m a
4 LTC1543 electrical characteristics v cc = 5v (notes 2, 3) the l denotes specifications which apply over the full operating temperature range. note 1: absolute maximum ratings are those beyond which the safety of a device may be impaired. note 2: all currents into device pins are positive; all currents out of device are negative. all voltages are referenced to device ground unless otherwise specified. note 3: all typicals are given for v cc = 5v, c1 = c2 = c vcc = 1 m f, c vdd = c vee = 3.3 m f tantalum capacitors and t a = 25 c. symbol parameter conditions min typ max units t r , t f rise or fall time (figures 3, 6) 5 ns t plh input to output (figures 3, 6) (LTC1543c) l 20 35 65 ns (figures 3, 6) (LTC1543i) l 20 35 75 ns t phl input to output (figures 3, 6) (LTC1543c) l 20 35 65 ns (figures 3, 6) (LTC1543i) l 20 35 75 ns d t input to output difference, ? t plh C t phl ? (figures 3, 6) (LTC1543c) l 0416 ns (figures 3, 6) (LTC1543i) l 0421 ns t skew output to output skew (figures 3, 6) 4 ns v.35 receiver v th differential receiver input threshold voltage C 2v (v a + v b )/2 2v (figure 3) l C 0.2 0.2 v d v th receiver input hysteresis C 2v (v a + v b )/2 2v (figure 3) l 15 40 mv i in receiver input current (a, b) C 10v v a,b 10v l 0.66 ma r in receiver input impedance C 10v v a,b 10v l 15 30 k w t r , t f rise or fall time (figures 3, 7) 15 ns t plh input to output (figures 3, 7) (LTC1543c) l 50 80 ns (figures 3, 7) (LTC1543i) l 50 90 ns t phl input to output (figures 3, 7) (LTC1543c) l 50 80 ns (figures 3, 7) (LTC1543i) l 50 90 ns d t input to output difference, ? t plh C t phl ? (figures 3, 7) (LTC1543c) l 0416 ns (figures 3, 7) (LTC1543i) l 0421 ns v.28 driver v o output voltage open circuit l 10 v r l = 3k (figure 4) l 5 8.5 v i ss short-circuit current v out = gnd l 150 ma i oz output leakage current C 0.25v v o 0.25v, power off or l 1 100 m a no-cable mode or driver disabled sr slew rate r l = 3k, c l = 2500pf (figures 4, 8) l 430v/ m s t plh input to output r l = 3k, c l = 2500pf (figures 4, 8) l 1.5 2.5 m s t phl input to output r l = 3k, c l = 2500pf (figures 4, 8) l 1.5 3 m s v.28 receive r v thl input low threshold voltage l 1.2 0.8 v v tlh input high threshold voltage l 2 1.2 v d v th receiver input hysteresis l 0 0.05 0.3 v r in receiver input impedance C 15v v a 15v l 357 k w t r , t f rise or fall time (figures 5, 9) 15 ns t plh input to output (figures 5, 9) l 60 100 ns t phl input to output (figures 5, 9) l 160 250 ns
5 LTC1543 c1 C (pin 1): capacitor c1 negative terminal. connect a 1 m f capacitor between c1 + and c1 C . c1 + (pin 2): capacitor c1 positive terminal. connect a 1 m f capacitor between c1 + and c1 C . v dd (pin 3): generated positive supply voltage for v.28. connect a 1 m f capacitor to ground. v cc (pin 4): positive supply voltage input. 4.75v v cc 5.25v. bypass with a 1 m f capacitor to ground. d1 (pin 5): ttl level driver 1 input. d2 (pin 6): ttl level driver 2 input. d3 (pin 7): ttl level driver 3 input. r1 (pin 8): cmos level receiver 1 output. r2 (pin 9): cmos level receiver 2 output. r3 (pin 10): cmos level receiver 3 output. m0 (pin 11): ttl level mode select input 0 with pull-up to v cc . m1 (pin 12): ttl level mode select input 1 with pull-up to v cc . m2 (pin 13): ttl level mode select input 2 with pull-up to v cc . dce/dte (pin 14): ttl level mode select input with pull- up to v cc . pi n fu n ctio n s uuu r3 b (pin 15): receiver 3 noninverting input with pull-up to v cc . r3 a (pin 16): receiver 3 inverting input. r2 b (pin 17): receiver 2 noninverting input. r2 a (pin 18): receiver 2 inverting input. d3/r1 b (pin 19): receiver 1 noninverting input and driver 3 noninverting output. d3/r1 a (pin 20): receiver 1 inverting input and driver 3 inverting output. d2 b (pin 21): driver 2 noninverting output. d2 a (pin 22): driver 2 inverting output. d1 b (pin 23): driver 1 noninverting output. d1 a (pin 24): driver 1 inverting output. gnd (pin 25): ground. v ee (pin 26): negative supply voltage. connect a 3.3 m f capacitor to gnd. c2 C (pin 27): capacitor c2 negative terminal. connect a 1 m f capacitor between c2 + and c2 C . c2 + (pin 28): capacitor c2 positive terminal. connect a 1 m f capacitor between c2 + and c2 C . figure 1. v.11 driver test circuit figure 2. v.11 driver/receiver ac test circuit a b 1543 f01 v od v oc r l 50 w r l 50 w a b a r b 1543 f02 r l 100 w c l 100pf c l 100pf 15pf test circuits
6 LTC1543 test circuits a b d a b 1543 f03 r v od v cm 50 w 125 w 125 w 50 w 50 w 50 w 15pf figure 3. v.35 driver/receiver test circuit a d 1543 f04 r l c l figure 4. v.10/v.28 driver test circuit figure 5. v.10/v.28 receiver test circuit a d 1543 f04 15pf r a ode selectio w u LTC1543 mode name m2 m1 m0 dce/dte d1 d2 d3 r1 r2 r3 not used (default v.11) 0000 v.11 v.11 z v.11 v.11 v.11 rs530a 0010 v.11 v.11 z v.11 v.11 v.11 rs530 0100 v.11 v.11 z v.11 v.11 v.11 x.21 0110 v.11 v.11 z v.11 v.11 v.11 v.35 1000 v.35 v.35 z v.35 v.35 v.35 rs449/v.36 1010 v.11 v.11 z v.11 v.11 v.11 v.28/rs232 1100 v.28 v.28 z v.28 v.28 v.28 no cable 1110zzzzzz not used (default v.11) 0001 v.11 v.11 v.11 z v.11 v.11 rs530a 0011 v.11 v.11 v.11 z v.11 v.11 rs530 0101 v.11 v.11 v.11 z v.11 v.11 x.21 0111 v.11 v.11 v.11 z v.11 v.11 v.35 1001 v.35 v.35 v.35 z v.35 v.35 rs449/v.36 1011 v.11 v.11 v.11 z v.11 v.11 v.28/rs232 1101 v.28 v.28 v.28 z v.28 v.28 no cable 1111zzzzzz
7 LTC1543 switchi g ti e wavefor s uw w figure 7. v.11, v.35 receiver propagation delays figure 8. v.10, v.28 driver propagation delays figure 9. v.10, v.28 receiver propagation delays v od2 ? od2 0v 1.5v 0v 1.5v t plh v oh v ol b ?a r t phl 1543 f07 f = 1mhz : t r 10ns : t f 10ns input output 3v 0v 1.5v 0v ?v 3v 1.5v 0v 3v ?v t phl t f v o ? o d a t plh t r 1543 f08 v ih v il 1.3v 0.8v 1.7v 2.4v t phl v oh v ol a r t plh 1543 f09 figure 6. v.11, v.35 driver propagation delays 5v 1.5v 1.5v 50% 10% 90% t plh t r 0v v o v o ? o d b ?a a b t phl t skew t skew 1543 f06 1/2 v o f = 1mhz : t r 10ns : t f 10ns v diff = v(a) ?v(b) 50% 10% 90% t f
8 LTC1543 applicatio n s i n for m atio n wu u u overview the LTC1543/ltc1544 form the core of a complete soft- ware-selectable dte or dce interface port that supports the rs232, rs449, eia530, eia530-a, v.35, v.36 or x.21 protocols. cable termination may be implemented using the ltc1344a software-selectable cable termination chip or by using existing discrete designs. a complete dce-to-dte interface operating in eia530 mode is shown in figure 10. the LTC1543 of each port is used to generate the clock and data signals. the ltc1544 is used to generate the control signals along with ll (local loopback).the ltc1344a cable termination chip is used only for the clock and data signals because they must support v.35 cable termination. the control signals do not need any external resistors. mode selection the interface protocol is selected using the mode select pins m0, m1 and m2 (see the mode selection table). for example, if the port is configured as a v.35 interface, the mode selection pins should be m2 = 1, m1 = 0, m0 = 0. for the control signals, the drivers and receivers will operate in v.28 (rs232) electrical mode. for the clock and data signals, the drivers and receivers will operate in v.35 electrical mode. the dce/dte pin will configure the port for dce mode when high, and dte when low. the interface protocol may be selected simply by plugging the appropriate interface cable into the connector. the mode pins are routed to the connector and are left uncon- nected (1) or wired to ground (0) in the cable as shown in figure 11. the internal pull-up current sources will ensure a binary 1 when a pin is left unconnected and that the LTC1543/ ltc1544 and the ltc1344a enter the no-cable mode when the cable is removed. in the no-cable mode the LTC1543/ltc1544 supply current drops to less than 200 m a and all LTC1543/ltc1544 driver outputs and ltc1344a resistive terminations are forced into a high impedance state. the mode selection may also be accomplished by using jumpers to connect the mode pins to ground or v cc . cable termination traditional implementations have included switching resistors with expensive relays, or requiring the user to change termination modules every time the interface standard has changed. custom cables have been used with the termination in the cable head or separate termina- tions are built on the board and a custom cable routes the signals to the appropriate termination. switching the terminations with fets is difficult because the fets must remain off even though the signal voltage is beyond the supply voltage for the fet drivers or the power is off. using the ltc1344a along with the LTC1543/ltc1544 solves the cable termination switching problem. via soft- ware control, the ltc1344a provides termination for the v.10 (rs423), v.11 (rs422), v.28 (rs232) and v.35 electrical protocols. v.10 (rs423) interface a typical v.10 unbalanced interface is shown in figure 12. a v.10 single-ended generator output a with ground c is connected to a differential receiver with inputs a ' con- nected to a, and input c ' connected to the signal return ground c. usually, no cable termination is required for v.10 interfaces, but the receiver inputs must be compliant with the impedance curve shown in figure 13. the v.10 receiver configuration in the ltc1544 is shown in figure 14. in v.10 mode switch s3 inside the ltc1544 is turned off.the noninverting input is disconnected inside the ltc1544 receiver and connected to ground. the cable termination is then the 30k input impedance to ground of the ltc1544 v.10 receiver.
9 LTC1543 figure 10. complete multiprotocol interface in eia530 mode applicatio n s i n for m atio n wu u u LTC1543 dce dte LTC1543 ltc1344a ltc1344a 1543 f10 d3 r1 103 w 103 w 103 w r3 ltc1544 d3 d4 r4 d2 r1 r4 r2 r3 ll txc rxc rxd txd scte txc rxc rxd serial controller d2 103 w scte r2 d1 103 w txd r3 r1 d2 d1 ltc1544 d3 r2 r1 d1 r3 d2 d1 d4 txd scte txc rxc rxd rts dtr dcd dsr cts ll rts dtr dcd dsr cts rts dtr dcd dsr cts ll serial controller r2 d3
10 LTC1543 applicatio n s i n for m atio n wu u u figure 12. typical v.10 interface nc nc cable 1543 f11 11 12 13 14 LTC1543 ltc1544 connector 14 13 12 11 22 21 m2 m1 ltc1344a latch m0 (data) 23 24 1 (data) m0 m1 m2 dce/dte dce/dte m2 m1 m0 (data) dce/ dte figure 11: single port dce v.35 mode selection in the cable aa ' cc ' generator balanced interconnecting cable load cable termination receiver 1543 f12
11 LTC1543 applicatio n s i n for m atio n wu u u figure 13. v.10 receiver input impedance i z v z 10v ?.25ma 3.25ma ?v 3v 10v 1543 f13 v.11 (rs422) interface a typical v.11 balanced interface is shown in figure 15. a v.11 differential generator with outputs a and b with ground c is connected to a differential receiver with ground c ' , inputs a ' connected to a, b ' connected to b. the v.11 interface has a differential termination at the receiver end that has a minimum value of 100 w . the termination resistor is optional in the v.11 specification, but for the high speed clock and data lines, the termination is required to prevent reflections from corrupting the data. the receiver inputs must also be compliant with the imped- ance curve shown in figure 13. in v.11 mode, all switches are off except s1 inside the ltc1344a which connects a 103 w differential termina- tion impedance to the cable as shown in figure 16. figure 16. v.11 receiver configuration figure 15. typical v.11 interface aa ' b c b ' c ' generator balanced interconnecting cable load cable termination receiver 100 w min 1543 f15 r3 124 w r5 20k ltc1344a LTC1543 ltc1544 receiver 1543 f16 a b a ' b ' c ' r1 51.5 w r8 6k s2 s3 r2 51.5 w r6 10k r7 10k gnd r4 20k s1 figure 14. v.10 receiver configuration r5 20k ltc1544 receiver 1543 f14 a b a ' b ' c ' r8 6k s3 r6 10k r7 10k gnd r4 20k
12 LTC1543 applicatio n s i n for m atio n wu u u v.28 (rs232) interface a typical v.28 unbalanced interface is shown in figure 17. a v.28 single-ended generator output a with ground c is connected to a single-ended receiver with input a ' con- nected to a, ground c ' connected via the signal return ground c. in v.28 mode all switches are off except s3 inside the LTC1543/ltc1544 which connects a 6k (r8) impedance to ground in parallel with 20k (r5) plus 10k (r6) for a combined impedance of 5k as shown in figure 18. the noninverting input is disconnected inside the LTC1543/ ltc1544 receiver and connected to a ttl level reference voltage for a 1.4v receiver trip point. figure 17. typical v.28 interface aa ' cc ' generator balanced interconnecting cable load cable termination receiver 1543 f17 r3 124 w r5 20k ltc1344a LTC1543 ltc1544 receiver 1543 f18 a b a ' b ' c ' r1 51.5 w r8 6k s2 s3 r2 51.5 w r6 10k r7 10k gnd r4 20k s1 figure 18. v.28 receiver configuration v.35 interface a typical v.35 balanced interface is shown in figure 19. a v.35 differential generator with outputs a and b with ground c is connected to a differential receiver with ground c ' , inputs a ' connected to a, b ' connected to b. the v.35 interface requires a t or delta network termination at the receiver end and the generator end. the receiver differential impedance measured at the connector must be 100 w 10 w , and the impedance between shorted termi- nals (a ' and b ' ) and ground c ' must be 150 w 15 w . in v.35 mode, both switches s1 and s2 inside the ltc1344a are on, connecting the t network impedance as shown in figure 20. the switch in the LTC1543 is off. the 30k input a a ' b c b ' c ' generator balanced interconnecting cable load cable termination receiver 1543 f19 50 w 125 w 50 w 50 w 125 w 50 w r3 124 w r5 20k ltc1344a LTC1543 receiver 1543 f20 a b a ' b ' c ' r1 51.5 w r8 6k s2 s3 r2 51.5 w r6 10k r7 10k gnd r4 20k s1 figure 20. v.35 receiver configuration figure 19. typical v.35 interface
13 LTC1543 applicatio n s i n for m atio n wu u u no-cable mode the no-cable mode (m0 = m1 = m2 = 1) is intended for the case when the cable is disconnected from the connector. the charge pump, bias circuitry, drivers and receivers are turned off, the driver outputs are forced into a high impedance state, and the supply current drops to less than 200 m a. charge pump the LTC1543 uses an internal capacitive charge pump to generate v dd and v ee as shown in figure 22. a voltage doubler generates about 8v on v dd and a voltage inverter generates about C 7.5v for v ee . four 1 m f surface mounted tantalum or ceramic capacitors are required for c1, c2, c3 and c4. the v ee capacitor c5 should be a minimum of 3.3 m f. all capacitors are 16v and should be placed as close as possible to the LTC1543 to reduce emi. receiver fail-safe all LTC1543/ltc1544 receivers feature fail-safe opera- tion in all modes. if the receiver inputs are left floating or shorted together by a termination resistor, the receiver output will always be forced to a logic high. impedance of the receiver is placed in parallel with the t network termination, but does not affect the overall input impedance significantly. the generator differential impedance must be 50 w to 150 w and the impedance between shorted terminals (a and b) and ground c must be 150 w 15 w . for the generator termination, switches s1 and s2 are both on and the top side of the center resistor is brought out to a pin so it can be bypassed with an external capacitor to reduce common mode noise as shown in figure 21. any mismatch in the driver rise and fall times or skew in the driver propagation delays will force current through the center termination resistor to ground, causing a high frequency common mode spike on the a and b terminals. the common mode spike can cause emi problems that are reduced by capacitor c1 which shunts much of the com- mon mode energy to ground rather than down the cable. v.35 driver a b c 51.5 w s2 on s1 on 1543 f21 51.5 w ltc1344a 124 w c1 100pf figure 21. v.35 driver using the ltc1344a 28 27 26 25 1543 f22 3 2 1 4 c3 1 f c4 1 f 5v c1 1 f c2 1 m f c5 3.3 m f LTC1543 v dd c1 + c1 v cc c2 + c2 v ee gnd + figure 22. charge pump
14 LTC1543 dte vs dce operation the dce/dte pin acts as an enable for driver 3/receiver 1 in the LTC1543, and driver 3/receiver 1 and driver 4/ receiver 4 in the ltc1544. the invert pin in the ltc1544 allows the driver 4/receiver 4 enable to be high or low true polarity. the LTC1543/ltc1544 can be configured for either dte or dce operation in one of two ways: a dedicated dte or dce port with a connector of appropriate gender or a port with one connector that can be configured for dte or dce operation by rerouting the signals to the LTC1543/ltc1544 using a dedicated dte cable or dedicated dce cable. a dedicated dte port using a db-25 male connector is shown in figure 23. the interface mode is selected by logic outputs from the controller or from jumpers to either v cc or gnd on the mode select pins. a dedicated dce port using a db-25 female connector is shown in figure 24. a port with one db-25 connector, but can be configured for either dte or dce operation is shown in figure 25. the configuration requires separate cables for proper signal routing in dte or dce operation. for example, in dte mode, the txd signal is routed to pins 2 and 14 via driver 1 in the LTC1543. in dce mode, driver 1 now routes the rxd signal to pins 2 and 14. multiprotocol interface with rl, ll, tm and a db-25 connector if the rl, ll and tm signals are implemented, there are not enough drivers and receivers available in the LTC1543/ ltc1544. in figure 26, the required control signals are handled by the ltc1544 but the clock/data signals use the applicatio n s i n for m atio n wu u u ltc1343. the ltc1343 has an additional single-ended driver/receiver pair that can handle two more optional control signals such as tm and ll. cable-selectable multiprotocol interface a cable-selectable multiprotocol dte/dce interface is shown in figure 27. the select lines m0, m1 and dce/dte are brought out to the connector. the mode is selected by the cable by wiring m0 (connector pin 18) and m1 (con- nector pin 21) and dce/dte (connector pin 25) to ground (connector pin 7) or letting them float. if m0, m1 or dce/ dte is floating, internal pull-up current sources will pull the signals to v cc . the select bit m2 is hard wired to v cc . when the cable is pulled out, the interface will go into the no-cable mode. compliance testing a european standard en 45001 test report is available for the LTC1543/ltc1544/ltc1344a chipset. a copy of the test report is available from ltc or tuv telecom services inc. (formerly detecon inc.) the title of the report is: test report no. net2/102201/97. the address of tuv telecom services inc. is: tuv telecom services inc. type approval division 1775 old highway 8, ste 107 st. paul, mn 55112 usa tel. +1 (612) 639-0775 fax. +1 (612) 639-0873
15 LTC1543 typical applicatio n s u figure 23. controller-selectable multiprotocol dte port with db-25 connector d2 d1 ltc1544 rts dtr dsr dcd cts d3 r2 r1 r4 r3 d2 LTC1543 ll txd scte txc rxc rxd m0 m1 m2 dce/dte v cc v dd v cc v ee gnd 2 14 24 11 15 12 17 9 3 1 4 19 20 8 23 10 6 22 5 13 18 7 16 1543 f23 d3 r2 r1 r3 d1 c2 1 f c1 1 f c5 1 f c3 1 f c4 3.3 f txd a (103) txd b scte a (113) scte b rxc a (115) rxc b rxd a (104) rxd b rts a (105) rts b dtr a (108) dtr b cts a (106) cts b ll a (141) sg shield db-25 male connector txc a (114) txc b dcd a (109) dcd b dsr a (107) dsr b d4 16 10 9 7 6 4 3 8 11 12 13 5 2 15 18 17 19 20 22 ltc1344a c6 100pf c7 100pf c8 100pf v cc v cc 5v 23 24 14 1 dce/dte m2 m1 m0 charge pump + 28 3 1 2 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 10 9 invert 15 16 17 18 19 20 21 22 23 24 25 nc 27 26 25 24 23 22 21 20 19 18 17 16 15 26 27 28 v ee c12 1 f c13 1 f c11 1 f c10 1 f c9 1 f m0 m1 m2 dce/dte m2 m1 m0 11 12 13 14 21 latch
16 LTC1543 typical applicatio n s u figure 24. controller-selectable dce port with db-25 connector d2 d1 ltc1544 cts dsr dtr dcd rts d3 r2 r1 r4 r3 d2 LTC1543 ll rxd rxc txc scte txd m0 m1 m2 dce/dte v cc v dd v cc v ee gnd 3 16 17 9 15 12 24 11 2 1 5 13 6 8 22 10 20 23 4 19 18 7 14 1543 f24 d3 r2 r1 r3 d1 c2 1 f c1 1 f c5 1 f c3 1 f c4 3.3 f rxd a (104) rxd b rxc a (115) rxc b scte a (113) scte b txd a (103) txd b cts a (106) cts b dsr a (107) dsr b rts a (105) rts b ll a (141) sgnd (102) shield (101) db-25 female connector txc a (114) txc b dcd a (109) dcd b dtr a (108) dtr b d4 16 10 9 7 6 4 3 8 11 12 13 5 2 15 18 17 19 20 22 ltc1344a c6 100pf c7 100pf c8 100pf v cc v cc v cc 5v 23 24 14 1 dce/dte m2 m1 m0 charge pump + 28 3 1 2 4 5 6 7 8 9 10 nc 11 12 13 14 1 2 3 4 5 6 7 8 10 9 invert 15 16 17 18 19 20 21 22 23 24 25 nc nc 27 26 25 24 23 22 21 20 19 18 17 16 15 26 27 28 v ee m0 m1 m2 dce/dte m2 m1 m0 11 12 13 14 latch 21 c12 1 f c13 1 f c11 1 f c10 1 f c9 1 f
17 LTC1543 typical applicatio n s u figure 25. controller-selectable multiprotocol dte/dce port with db-25 connector d2 d1 ltc1544 d3 r2 r1 r4 r3 d2 LTC1543 dte_txd/dce_rxd dte_txc/dce_txc dte_rxc/dce_scte dte_rxd/dce_txd dte_rts/dce_cts dte_dtr/dce_dsr dte_dcd/dce_dcd dte_dsr/dce_dtr dte_cts/dce_rts dte_ll/dce_ll dte_scte/dce_rxc m0 m1 m2 dce/dte v cc v dd v cc v ee gnd s s 2 14 24 11 15 12 17 9 3 1 4 19 20 8 23 10 6 22 5 13 18 7 16 1543 f25 d3 r2 r1 r3 d1 c2 1 f c1 1 f c5 1 f c3 1 f c4 3.3 f txd a txd b scte a scte b rxd a rxd b rxc a rxc b rxc a rxc b rxd a rxd b rts a rts b dtr a dtr b cts a cts b dsr a dsr b cts a cts b ll a sg shield db-25 connector txc a txc b scte a scte b txd a txd b txc a txc b dcd a dcd b dsr a dsr b rts a rts b ll a dcd a dcd b dtr a dtr b d4 16 10 9 7 6 4 3 8 11 12 13 5 2 15 18 17 19 20 22 ltc1344a c6 100pf c7 100pf c8 100pf v cc v cc 5v 23 24 14 1 dce/dte m2 m1 m0 charge pump + 28 3 1 2 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 10 9 invert 15 16 17 18 19 20 21 22 23 24 25 nc 27 26 25 24 23 22 21 20 19 18 17 16 15 26 27 28 v ee m0 m1 m2 dce/dte dce/dte m2 m1 m0 11 12 13 14 dte dce latch 21 c12 1 f c13 1 f c11 1 f c10 1 f c9 1 f
18 LTC1543 typical applicatio n s u figure 26. controller-selectable multiprotocol dte/dce port with rl, ll, tm and db-25 connector d2 d1 ltc1544 d3 r2 r1 r4 r3 d2 ltc1343 dte_ll/dce_tm dte_txc/dce_txc dte_rxc/dce_scte dte_rxd/dce_txd dte_tm/dce_ll dte_rts/dce_cts dte_dtr/dce_dsr dte_dcd/dce_dcd dte_dsr/dce_dtr dte_cts/dce_rts dte_rl/dce_rl dte_txd/dce_rxd dte_scte/dce_rxc ctrl latch invert 423set gnd dce m2 m1 m0 ec v cc v dd v cc v ee gnd 2 18 14 24 11 15 12 17 9 3 1 4 19 20 8 23 10 6 22 5 13 21 7 16 25 1543 f26 d3 d4 r2 r3 r4 d1 c2 1 f c1 1 f c5 1 f c3 1 f c4 3.3 f ll a txd a txd b scte a scte b tm a rxd a rxd b rxc a rxc b rxc a rxc b rxd a rxd b rts a rts b dtr a dtr b cts a cts b dsr a dsr b cts a cts b rl a sg shield db-25 connector txc a txc b scte a scte b txd a txd b txc a txc b dcd a dcd b dsr a dsr b rts a rts b rl a dcd a dcd b dtr a dtr b d4 16 10 9 7 6 4 3 8 11 12 13 5 2 15 18 17 19 20 22 ltc1344a c6 100pf c7 100pf c8 100pf v cc v cc 5v 23 24 14 1 dce/dte m2 m1 m0 + 44 3 1 2 4 5 8 6 7 9 10 12 13 14 15 16 20 22 11 1 r1 100k 2 3 4 5 6 7 8 10 9 invert 15 16 17 18 19 20 21 22 23 24 25 nc 43 42 41 39 38 37 36 35 34 33 32 31 30 29 28 27 26 21 19 18 17 24 26 27 28 v ee m0 m1 m2 dce/dte dce/dte m2 m1 m0 11 12 13 14 dte dce r1 25 40 23 v cc lb lb tm a ll a latch 21 c12 1 f c13 1 f c11 1 f c10 1 f c9 1 f charge pump
19 LTC1543 typical applicatio n s u figure 27. cable-selectable multiprotocol dte/dce port with db-25 connector information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights. d2 d1 ltc1544 d3 r2 r1 r4 r3 d2 LTC1543 dte_txd/dce_rxd dte_txc/dce_txc dte_rxc/dce_scte dte_rxd/dce_txd dte_rts/dce_cts dte_dtr/dce_dsr dte_dcd/dce_dcd dte_dsr/dce_dtr dte_cts/dce_rts dte_scte/dce_rxc m0 m1 m2 dce/dte v cc v dd nc nc v cc v ee gnd 2 v cc 14 24 11 15 12 17 9 3 1 25 21 18 4 19 20 8 23 10 6 22 5 13 7 16 1543/44 f27 d3 r2 r1 r3 d1 c2 1 f c1 1 f c5 1 f c3 1 f c4 3.3 f txd a txd b scte a scte b rxd a rxd b rxc a rxc b rxc a rxc b rxd a rxd b rts a rts b dtr a dtr b cts a cts b dsr a dsr b cts a cts b sg shield dce/dte m1 m0 db-25 connector txc a txc b scte a scte b txd a txd b txc a txc b dcd a dcd b dsr a dsr b rts a rts b dcd a dcd b dtr a dtr b d4 16 10 9 7 6 4 3 8 11 12 13 5 2 15 18 17 19 20 22 ltc1344a c6 100pf c7 100pf c8 100pf v cc v cc 5v 23 24 14 1 dce/dte m2 m1 m0 + 28 3 1 2 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 invert 15 17 16 18 19 20 21 22 23 24 25 nc 27 26 25 24 23 22 21 20 19 18 17 16 15 26 27 28 v ee m0 m1 m2 dce/dte 11 12 13 14 dte dce mode pin 18 pin 21 v.35 pin 7 pin 7 rs449, v.36 nc pin 7 rs232 pin 7 nc cable wiring for mode selection mode pin 25 dte pin 7 dce nc cable wiring for dte/dce selection latch 21 c12 1 f c13 1 f c11 1 f c10 1 f c9 1 f charge pump
20 LTC1543 1543fs, sn1543x lt/tp 0898 4k ? printed in usa ? linear technology corporation 1998 dimensions in inches (millimeters) unless otherwise noted. package descriptio n u g package 28-lead plastic ssop (0.209) (ltc dwg # 05-08-1640) related parts part number description comments ltc1321 dual rs232/rs485 transceiver two rs232 driver/receiver pairs or two rs485 driver/receiver pairs ltc1334 single 5v rs232/rs485 multiprotocol transceiver two rs232 driver/receiver or four rs232 driver/receiver pairs ltc1343 software-selectable multiprotocol transceiver 4-driver/4-receiver for data and clock signals ltc1344a software-selectable cable terminator perfect for terminating the LTC1543 ltc1345 single supply v.35 transceiver 3-driver/3-receiver for data and clock signals ltc1346a dual supply v.35 transceiver 3-driver/3-receiver for data and clock signals ltc1544 software-selectable multiprotocol transceiver companion to LTC1543 for control signals g28 ssop 0694 0.005 ?0.009 (0.13 ?0.22) 0 ?8 0.022 ?0.037 (0.55 ?0.95) 0.205 ?0.212** (5.20 ?5.38) 0.301 ?0.311 (7.65 ?7.90) 1234 5 6 7 8 9 10 11 12 14 13 0.397 ?0.407* (10.07 ?10.33) 25 26 22 21 20 19 18 17 16 15 23 24 27 28 0.068 ?0.078 (1.73 ?1.99) 0.002 ?0.008 (0.05 ?0.21) 0.0256 (0.65) bsc 0.010 ?0.015 (0.25 ?0.38) dimensions do not include mold flash. mold flash shall not exceed 0.006" (0.152mm) per side dimensions do not include interlead flash. interlead flash shall not exceed 0.010" (0.254mm) per side * ** linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 l fax: (408) 434-0507 l www.linear-tech.com


▲Up To Search▲   

 
Price & Availability of LTC1543

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X